

УДК 538.975 ББК 22.3

КАПИЛЛЯРНЫЕ ЭФФЕКТЫ В БОРОУГЛЕРОДНЫХ НАНОТРУБКАХ

С.В. Борознин, И.В. Запороцкова, Е.В. Борознина

Изучено внутреннее заполнение однослойных бороуглеродных BC₃ нанотруб двух типов атомного упорядочения атомарным водородом. Рассмотрены два механизма внедрения атома H в полость трубки и определены основные энергетические и геометрические характеристики процесса заполнения. Расчеты выполнены методом MNDO в рамках модели молекулярного кластера.

Ключевые слова: бороуглеродная нанотрубка, адсорбция, внутреннее заполнение, водородопоглощающий материал, «капиллярный» метод и метод «просачивания».

Введение

Выполненные к настоящему времени теоретические и экспериментальные исследования доказали возможность эффективной множественной адсорбции атомарного водорода на внутренней и внешней поверхности углеродных и борных нанотрубок [1; 3; 6]. То есть нанотрубки являются материалом, хорошо поглощающим водород, что открывает перспективы их использования в качестве накопителей водорода для применения в топливно-энергетической отрасли нового поколения.

Можно предположить, что в качестве водородопоглощающих материалов могут быть использованы бороуглеродные наногрубки, например, BC₃ типа, которые могут накапливать газообразное вещество путем поверхностной сорбции. Кроме того, BC₃-нанотрубки обладают внутренней полостью, которая при благоприятных условиях также может быть заполнена газообразным водородом. Выполненные ранее расчеты доказали достаточную активность процесса адсорбции атома водорода на внешней поверхности BC₃тубуленов [8]. Рассмотрим теперь процесс внутреннего заполнения BC₃-нанотруб ато-

марным водородом. Опираясь на результаты исследования механизма внутреннего заполнения углеродных нанотруб, подробно описанного в работе [2], мы рассмотрели два способа внедрения атомов Н в полость бороуглеродной трубки: 1) «капиллярный» способ, когда внедряющийся атом проникает внутрь трубки через ее торцевое отверстие; 2) внедрение путем «просачивания», когда внедряющийся атом проникает внутрь трубки через боковую поверхность тубулена. Нами выполнены полуэмпирические MNDOисследования предложенных механизмов проникновения атомарного водорода в однослойные бороуглеродные нанотрубки в рамках модели молекулярного кластера [9]. Несмотря на то, что молекулярный кластер содержит меньше атомов, чем реальная наносистема, применение данной модели обусловлено физической сущностью рассматриваемой задачи, а именно пространственно ограниченным характером процесса.

1. «Капиллярный» метод проникновения водорода

Для исследования «капиллярного» метода проникновения атома водорода внутрь нанотруб были рассмотрены однослойные полубесконечные BC₃ тубулены (6, 0) А и Б типов. Особенности взаимного расположения атомов бора и углерода в бороуглеродных нанотрубках типов А и Б описаны в работе [4]. Молекулярный кластер BC_3 нанотрубки содержал 96 атомов бора и углерода. Один его конец был открыт, а другой замкнут псевдоатомами, что позволяло имитировать полубесконечность нанотрубки. Процесс заполнения атомарным водородом выбранных тубуленов моделировался путем пошагового приближения атома H к нанотрубке вдоль ее главной продольной оси и дальнейшего продвижения к геометрическому центру кластера, проникновением внутрь через открытый (то есть не насыщенный псевдоатомами) торец. Рассматриваемая модель представлена на рисунке 1 для BC₃-нанотрубки типа А.

Рис. 1. Модель проникновения атомарного водорода «капиллярным» методом в BC₃-нанотрубку (6,0) типа А

В результате расчетов были построены профили поверхности потенциальной энергии взаимодействия атома Н и бороуглеродной нанотрубки, определены потенциальные барьеры, которые преодолевает атом при внедрении в трубку. Результаты расчетов наглядно представлены на рисунке 2 и в таблице 1. Анализ результатов показывает, что при внедрении в полость тубуленов атом Н должен преодолеть барьер, отождествляемый с энергией активации, равный Е_{акт} = 2,56 эВ для А-типа и Е_{акт} = 1,41 эВ для Б-типа нанотрубок. Эти барьеры находятся на расстояниях 1,1 Å и 0,2 Å соответственно. Но при дальнейшем продвижении атома водорода в полости трубки вид профилей поверхности потенциальных энергий различался для двух типов нанотрубок. На профиле потенциальной энергии для тубулена типа А видны чередующиеся энергетические минимумы и максимумы, причем минимумам соответствует прохождение атома водорода в области цепочки атомов тубулена, а барьеры появляются при прохождении атома Н в области центров гексагонов, образующих поверхность нанотруб.

В случае нанотрубок Б типа механизм «капиллярного» заполнения выглядит следующим образом. После преодоления потенциального барьера атом водорода попадает в район энергетического минимума, который

Рис. 2. Профиль поверхности потенциальной энергии процесса внутреннего насыщения бороуглеродных нанотрубок «капиллярным» методом. Пунктиром показана граница трубки

Таблица 1

Тип	d, Å	Еакт, ЭВ		α		$V_{s}, c^{-1} cm^{-2}$		ω_{β}, c^{-1}	
HT		MNDO	DFT	MNDO	DFT	MNDO	DFT	MNDO	DFT
«Капиллярный» метод									
А	4,63	2,56		$1,26 \times 10^{-13}$		1,85×10 ⁻¹⁵		~10 ⁻²⁷	
Б	4,63	1,41	-	7,69×10 ⁻⁸	-	1,15×10 ⁻⁹	-	~10 ⁻³¹	-
«Просачивание»									
А	4,63	4,01		6,34×10 ⁻²¹		2,31×10 ⁻¹⁷		~10 ⁻¹²	
Б	4,63	9,41	1,9	4,59×10 ⁻⁴⁸	2,7×10 ⁻¹⁰	1,67×10 ⁻⁴⁴	3,1×10 ⁻¹⁸	~10 ⁻¹⁸	0,99

Основные характеристики процесса заполнения (6,0) нанотруб типов А и Б атомарным водородом *

находится на расстоянии 1,9Å от границы трубки. Данное расстояние соответствует середине второго слоя гексагонов от торца ВС₃-нанотубулена. При дальнейшем движении атома Н в полости тубулена на расстоянии 2,5 Å от торца ВС₃-нанотрубки располагается потенциальный барьер, высота которого равна 1,37 эВ. После преодоления этого барьера внедряемый атом попадает в область энергетического минимума, но данное состояние метастабильно, о чем свидетельствует тот факт, что данный минимум находится в положительной области. Из всего сказанного можно сделать вывод, что наиболее вероятное расположение атома водорода внутри нанотрубки типа Б при «капиллярном» заполнении – на расстоянии 1,9 Å от границы нанотубулена.

Преодоление атомом водорода потенциального барьера (для А и Б типов ВС₃нанотруб) возможно классическим и квантовым путями. Первый способ предполагает увеличение энергии атома Н до тех пор, пока она не превысит максимальную точку на потенциальной поверхности. За счет дисперсии скоростей атомов по температуре всегда существуют частицы с относительно большой энергией. Используя квазиклассическое приближение, можно оценить долю атомов водорода, обладающих достаточной энергией для преодоления барьера по известной формуле [7]:

$$\alpha = \exp\left(-\frac{E_a}{kT}\right),\tag{1}$$

При T = 1000 К данная величина оказывается равной $\alpha_A = 1,26 \times 10^{-13}$ (для случая BC₃-нанотрубки типа A), $d_B = 7,69 \times 10^{-8}$ (для случая BC₃-нанотрубки типа Б). Число частиц массой m, присоединившихся к поверхности трубки за единицу времени (скорость реакции), можно найти, используя выражение [9] (в приближении, что каждое столкновение приводит к положительному результату – захвату атома водорода)

$$v_s = \left(\frac{kT}{2\pi m}\right)^{1/2} n\alpha, \qquad (2)$$

где n – концентрация атомов H, масса атома водорода m = 1.66 г 10^{-27} кг.

При описанных выше условиях скорость реакции по порядку величины будет равна v_{sA} ~ $10^{-10}n$ (для случая BC₃-нанотрубки типа A); v_{sb} ~ $10^{-4}n$ (для случая BC₃-нанотрубки типа Б).

Используя экспериментальные значения давления молекулярного водорода (300 торр) [7], можно оценить концентрацию атомарного водорода, который образуется в экспериментальных установках, с помощью формулы давления для идеального газа n = p/kT. Она оказывается равной $n \sim 10^{19}\beta$ см⁻³, где β – доля атомов водорода в идеальном молекулярном газе. Энергия связи молекулы H₂ составляет 4.75 эВ. Считаем для простоты, что диссоци-

^{*} В данной таблице приведены следующие обозначения: *d* – диаметр тубулена; *E*_{*axm*} – энергия активации; *α* – доля атомов H, обладающих достаточной энергией для преодоления барьера классическим способом; *V*_s – скорость реакции; *ω*_{*в*} – вероятность прохождения исходного числа атомов H сквозь барьер.

ация молекулы водорода происходит за счет столкновения с другими молекулами, когда ее энергия становится сравнимой с энергией связи. Используя формулу 4.1, получаем величину $\beta \sim 10^{-24}$. Концентрация атомарного водорода $n \sim 10^{-5}$ см⁻³, а скорость реакции $V_{sA} \sim 2,13 \times 10^{-15}$ с⁻¹ см⁻²; $V_{sE} \sim 1,3 \times 10^{-9}$ с⁻¹ см⁻². Данное значение свидетельствует о том, что процесс заполнения атомарным водородом является достаточно медленным.

Второй способ преодоления потенциального барьера для частиц, обладающих средней энергией при заданной температуре, – туннельный. Доля атомарного водорода составляет по-прежнему $\beta \sim 10^{-24}$. Вероятность туннелирования легко посчитать, воспользовавшись формулой квазиклассического приближения и аппроксимируя потенциальный барьер квадратичным потенциалом по формуле [5]:

$$E(R) = E_{akt} - \frac{K(R - R_{akt})^2}{2}, \qquad (3)$$

- где $K = 2(E_{akt} E_0)/d^2$ -коэффициент, который выводится из граничных условий $E(R) = E_0;$
 - *d* характерная полуширина потенциального барьера;
 - E₀ = (3/2)kT кинетическая энергия налетающего на барьер атома водорода.

Тогда вероятность прохождения частицы массы m через квадратичный потенциальный барьер высотой E_{akt} и характерной полушириной d будет определяться следующей формулой [там же]:

$$w \approx \exp\left(-\frac{\pi d \left(E_{akm}-1.5kT\right)}{\hbar} \sqrt{\frac{2m}{E_{akm}}}\right).$$
 (4)

Анализируя потенциальные кривые (рис. 2), получаем характерную полуширину барьера для нанотрубки типа $A - d_A = 0.4 \times 10^{-10}$ м, а для нанотруб типа $B - d_B = 1.3 \times 10^{-10}$ м. Тогда значение вероятности для соответствующих типов нанотруб оказывается равным $\omega_A \sim 10^{-3}$ с⁻¹; $\omega_B \sim 10^{-7}$ с⁻¹, а вероятность прохождения исходного числа атомов водорода сквозь барьер будет $\omega_{BA} \sim 10^{-27}$ с⁻¹; $\omega_{BE} \sim 10^{-31}$ с⁻¹.

Анализ результатов расчета показывает (см. табл. 1), что при заполнении нанотрубок

атомарным водородом «капиллярным» методом наиболее выгодно преодолевать потенциальный барьер классическим путем. А из двух нанотрубок – типов А и Б – энергетически более эффективно идет заполнение тубулена типа Б.

2. Заполнение нанотрубок методом «просачивания»

Исследованы процессы заполнения ВС3нанотрубок методом «просачивания», то есть способом проникновения атома Н внутрь тубулена через его боковую поверхность, а именно сквозь гексагон. Процесс заполнения моделировался путем пошагового приближения Н к поверхности трубки вдоль перпендикуляра, проведенного через центр бокового бороуглеродного цикла к центральной оси тубулена. Исследуемая модель представлена на рисунке 3 для BC₃-нанотрубки типа Б. Рассмотрены молекулярные кластеры (6,0) нанотруб, содержащие 96 атомов В и С, границы которых замкнуты псевдоатомами, в качестве которых выбраны атомы водорода. Атом Н внедрялся через гексагон, находящийся в середине МК, чтобы исключить влияние псевдоатомов на процесс.

Рис. 3. Модель процесса проникновения атома водорода в бороуглеродную нанотрубу (6,0) типа Б методом «просачивания»

На рисунке 4 представлены профили поверхности потенциальной энергии процесса проникновения водорода для А и Б типов ВС₃-трубок, а электронно-энергетические характеристики процесса – в таблице 1. Анализ результатов показывает, что для внедрения атома Н внутрь нанотрубки через ее боковую грань ему необходимо

ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ ИННОВАЦИИ

преодолеть потенциальный барьер. Величина энергетического барьера для тубулена типа A, который мы назвали энергией активации, равна $E_{axm} = 4,01$ эВ. Для тубулена типа Б значение энергии активации значительно выше $E_{axm} = 9,41$ зВ. Следовательно, можно сделать вывод, что заполнение полости бороуглеродной нанотрубки атомами водорода методом «просачивания» более вероятно для нанотрубок A типа. Пики потенциальных барьеров находятся на расстоянии 0,2 Å от поверхности нанотубуленов обоих типов внутри трубок.

Как говорилось ранее, атом водорода способен преодолеть потенциальный барьер двумя способами: классическим и путем туннелирования. Основные характеристики этих вариантов, рассчитанные согласно формулам 1–4, приведены в таблице 1. Анализ результатов показывает, что преодоление атомом водорода потенциального барьера при «просачивании» сквозь поверхность бороуглеродной нанотрубки типа А вероятнее всего будет проходить туннельным способом.

Рис. 4. Профиль поверхности потенциальной энергии процесса внутреннего насыщения бороуглеродных нанотрубок методом «просачивания». Ось ординат соответствует расположению границы нанотрубки

Что же произойдет с водородом после преодоления потенциального барьера? Ответ на этот вопрос был получен при проведении расчетов с полной оптимизации геометрических параметров системы, когда атом водорода уже прошел пик потенциальной энергии. Оказалось, что для обоих рассмотренных типов нанотрубок атом Н разместился в центре тубулена на его главной продольной оси. Этот результат можно объяснить тем, что именно в центре нанотрубок данного диаметра состояние водорода наиболее устойчиво, так как влияние всех действующих на него сил со стороны окружающих атомов тубулена скомпенсировано.

Выводы

1. При изучении механизмов внутреннего заполнения бороуглеродных BC₃ нанотрубок (6, 0) типов А и Б атомарным водородом выяснено, что для тубуленов типа А наиболее эффективным способом насыщения является метод «просачивания», а для нанотрубок типа Б – «капиллярный» метод.

2. Доказано, что преодоление потенциального барьера атомом водорода при внедрении в нанотрубку типа А будет происходить классическим путем, а в случае нанотубулена типа Б наиболее вероятным является туннелирование. Установлено наиболее устойчивое положение атома Н в трубке, а именно в ее центре на главной продольной оси.

Работа выполнена в рамках Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг. (Соглашение № 14.В37.21.0080).

ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ ИННОВАЦИИ

СПИСОКЛИТЕРАТУРЫ

1. Елецкий, А. В. Сорбционные свойства углеродных наноструктур / А. В. Елецкий // Успехи физических наук. – 2004. – Т. 174, № 11. – С. 1191–1231.

2. Запороцкова, И. В. Механизмы заполнения однослойных углеродных нанотрубок атомарным водородом / И. В. Запороцкова, Н. Г. Лебедев // Хи-мическая физика. – 2006. – Т. 25, № 5. – С. 91–96.

3. Запороцкова, И. В. Углеродные и неуглеродные наноматериалы и композитные структуры на их основе: строение и электронные свойства : монография / И. В. Запороцкова ; Гос. образоват. учреждение высш. проф. образования «Волгогр. гос. ун-т». – Волгоград : Изд-во ВолГУ, 2009. – 490 с.

4. Запороцкова, И. В. Электронное строение и характеристики некоторых видов борсодержащих нанотруб / И. В. Запороцкова и [др.] // Вестник Волгоградского государственного университета.

Сер. 10, Инновационная деятельность. – 2012. – Вып. 6. – С. 81–86.

5. Ландау, Л. Д. Квантовая механика / Л. Д. Ландау, Е. М. Лифшиц. – М. : Наука, 1974. – 752 с.

6. Перевалова, Е. В. Адсорбция легких атомов на поверхности борных нанотруб / Е. В. Перевалова [и др.] // Технология металлов. – 2010. – № 10. – С. 25–29.

7. Эмануэль, Н. М. Курс химической кинетики / Н. М. Эмануэль, Д. Г. Кнорре. – М. : Высш. шк., 1984. – 463 с.

8. Boroznin, S. V. Hydrogenation of boroncarbon nanotubes / S. V. Boroznin, I. V. Zaporotskova // Nanoscience & nanotechnology 2012. Book of abstract. – Frascati, 2012. – P. 15.

9. Dewar, M. J. S. Ground states of molecules. The MNDO method. Approximations and Parameters / M. J. S. Dewar, W. Thiel // J. Amer. Chem. Soc. – 1977. – Vol. 99. – P. 4899–4906.

INTERNAL FILLING OF SINGLE-WALL BORON-CARBON NANOTUBES

S.V. Boroznin, I.V. Zaporotskova, E.V. Boroznina

Atomic hydrogen internal filling in two types of single-wall boron-carbon nanotubes BC_3 has been studied. Two mechanisms of the hydrogen atom intercalation inside of boron-carbon nanotubes have been considered. The main characteristics of internal filling processes have been calculated by MNDO method using the molecular cluster model.

Key words: boron-carbon nanotube, adsorption, internal filling, material absorbs hydrogen.