

УДК 538.975 ББК 22.3

КВАНТОВО-ХИМИЧЕСКИЕ РАСЧЕТЫ ПРОЦЕССОВ АДСОРБЦИИ ПРОСТЫХ ГАЗОФАЗНЫХ МОЛЕКУЛ НА ПОВЕРХНОСТЬ ПИРОЛИЗОВАННОГО ПОЛИАКРИЛОНИТРИЛА

Н.А. Аникеев, И.В. Запороцкова

В работе исследуются адсорбции газофазных молекул водорода, кислорода и фтора на поверхности одно- и двухслойного пиролизованного полиакрилонитрила. Анализ полученных результатов установил, что для двухслойного пиролизованного полиакрилонитрила атом азота, входящий в состав гексагона поверхности, стимулирует процесс адсорбции молекул водорода и фтора, однако на адсорбцию молекулы кислорода влияет негативно.

Ключевые слова: пиролизованный полиакрилонитрил, процесс адсорбции, наноэлектроника, молекулярный кластер, монослой.

Материалы, которые использует человек в своей деятельности, всегда играли важную, а часто и определяющую роль в прогрессе цивилизации.

Ранее [1–2; 7] были изучены процессы адсорбции атомов газовой фазы (водорода, кислорода, фтора) с поверхностью одно- и двухслойного пиролизованного полиакрилонитрила и была доказана возможность создания композитов на основе ППАН. Интересно было исследовать механизмы адсорбции простых газофазных молекул фтора, кислорода и водорода на поверхности одно- и двухслойного пиролизованного полиакрилонитрила. Данные процессы были изучены с использованием модели молекулярного кластера в рамках квантово-механического расчетного метода MNDO при полной оптимизации поверхности ППАН.

Рассмотрим различные варианты параллельного расположения молекул H_2 , F_2 , O_2 относительно поверхности.

1. Один атом молекулы ориентирован на атом углерода поверхности ППАН, в ближайшем окружении которого (на расстоянии до второго соседа включительно) имеются четыре атома азота (рис. 1, атом 1); молекула располагается параллельно связи С – С (обозначена номерами 1–1' на рис. 1).

2. Один атом молекулы ориентирован на атом С поверхности, в ближайшем окружении которого (до второго соседа включительно) имеются три атома азота (рис. 1, атом 2); молекула параллельна связи С – С и обозначена номерами 2–2' на рисунке 1.

3. Один атом молекулы ориентирован на середину связи С – N монослоя (точка 3 на

22

рис. 1); молекула параллельна связи и направлена в сторону атома С (направление 3–3' на рис. 1).

4. Один атом молекулы ориентирован на фиктивный атом в центре углеродного гексагона (точка 4 на рис. 1); молекула параллельна направлению от центра гексагона к атому углерода, то есть ориентирована в направлении 4–4' на рис. 1.

5. Один атом молекулы ориентирован на атом азота (точка 5 на рис. 1); молекула параллельна направлению от атома азота к центру гексагона, то есть в направлении 5–5' на рис. 1.

Рис. 1. Варианты расположения молекул водорода (фтора, кислорода) относительно монослоя ППАН

В результате расчетов были построены графики потенциальных энергий процессов адсорбции молекул H₂, F₂, O₂, для всех пяти случаев положения молекул относительно слоя одно- и двухслойного ППАН, изображенные на рис. 2–3. В таблицах 1, 2 представлены основные характеристики адсорбционных взаимодействий.

Заключение

В процессе выполнения работы были получены следующие основные результаты и сделаны выводы:

1. Выполнены исследования адсорбции газофазных молекул водорода, кислорода и фтора на поверхности одно- и двухслойного ППАН при их параллельной ориентации относительно поверхности для пяти вариантов направления молекул; исследованы возможности адсорбции выбранных молекул над различными по атомному составу гексагонами ППАН.

2. Установлено, что для вариантов 1–3 ориентации молекул водорода, кислорода и фтора относительно поверхности однослойного ППАН адсорбция реализуется для всех выб-

ранных молекул, причем для первого варианта ориентации наблюдается химическая адсорбция для всех молекул, а для вариантов 2 и 3 – химическая адсорбция реализуется только для молекулы H₂. Для O₂ и F₂ наблюдается физическая адсорбция (расстояние адсорбции больше 2 Å).

3. Для варианта 4 ориентации выбранных молекул реализуется адсорбция только для молекулы кислорода, остальные молекулы адсорбционных комплексов с ППАН не образуют. Для варианта 5 реализуется химическая адсорбция молекулы водорода и физическая адсорбция молекулы фтора. Молекулярный кислород в данном варианте взаимодействия на поверхности монослоя ППАН не адсорбируется.

4. Анализ полученных результатов установил, что для монослоя ППАН атом азота, входящий в состав гексагона поверхности, стимулирует процесс адсорбции молекул водорода и фтора; однако на адсорбцию молекулы кислорода влияет негативно.

5. Установлено, что для вариантов 1–3 ориентации молекул водорода, кислорода и фтора относительно поверхности двухслойного ППАН адсорбция реализуется для всех выбранных молекул, причем для первого варианта ориентации наблюдается химическая адсорбция для всех молекул, кроме F_2 , а для вариантов 2 и 3 – химическая адсорбция реализуется для всех молекул, кроме молекулы F_2 во втором случае, в котором наблюдается физическая адсорбция (расстояние адсорбции больше 2Å).

6. Для варианта 4 ориентации выбранных молекул реализуется адсорбция только для молекул кислорода и водорода, молекула фтора адсорбционного комплекса с ППАН не образует. Для варианта 5 реализуется химическая адсорбция молекулы фтора и физическая адсорбция молекулы водорода. Молекулярный кислород в данном варианте взаимодействия на поверхность двухслойного ППАН не адсорбируется.

7. Анализ полученных результатов установил, что для двухслойного ППАН атом азота, входящий в состав гексагона поверхности, стимулирует процесс адсорбции молекул водорода и фтора, однако на адсорбцию молекулы кислорода влияет негативно.

23

Рис. 2. Графики потенциальных энергий процесса адсорбции газофазных молекул на монослой ППАН для различных вариантов ориентации молекул: *a* – H₂; *b* – C₂; *b* – C₂

б

Рис. 3. Графики потенциальных энергий процесса адсорбции газофазных молекул на двухслойный ППАН

ISSN 2305-7815. Вестн. Волгогр. гос. ун-та. Сер. 10, Иннов. деят. 2013. № 1 (8)

Таблица 1

	H ₂	F_2	O ₂	
Вариант 1				
r, Å	1,9	1,7	1,8	
E, eV	6,98	6,85	2,09	
Вариант 2				
r, Å	2	2	3	
E, eV	6,55	7,55	8,605	
Вариант 3				
r, Å	1,6	2	2,3	
E, eV	1,49	2,37	6,55	
Вариант 4				
r, Å	-	_	1,8	
E, eV	-	_	8,88	
Вариант 5				
r, Å	1,6	2,4	-	
E, eV	6,094	7,04	_	

Основные характеристики процесса адсорбции молекул водорода, фтора и кислорода на поверхность монослоя ППАН

Таблица 2

Основные характеристики процесса адсорбции молекул водорода, фтора и кислорода на поверхность двухслойного ППАН

	H ₂	F_2	O_2	
Вариант 1				
r, Å	1,8	2,3	1,8	
E, eV	7,952	6,033	2,465	
Вариант 2				
r, Å	1,3	2,4	2	
E, eV	10,007	4,6	9,74	
Вариант 3				
r, Å	1,6	1,8	1,8	
E, eV	9,73	1,059	2,26	
Вариант 4				
r, Å	1,3	_	1,6	
E, eV	1,646	_	8,48	
Вариант 5				
r, Å	3,8	1,8	_	
E, eV	4,48	4,05	_	

ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ ИННОВАЦИИ

СПИСОКЛИТЕРАТУРЫ

1. Запороцкова, И. В. Моделирование и полуэмпирические исследования структуры пиролизованного полиакрилонитрила / И. В. Запороцкова, О. А. Давлетова// Нанотехнологии и наноматериалы: современное состояние и перспективы развития в условиях Волгоградской области : материалы Всерос. науч.-техн. конф., Волгоград, 10–11 дек. 2008. – Волгоград. – С. 352–358.

2. Запороцкова, И. В. Углеродные и неуглеродные наноматериалы и композитные структуры на их основе: Структура и электронные свойства : монография / И. В. Запороцкова ; Гос. образоват. учреждение высш. проф. образования «Волгогр. гос. ун-т». – Волгоград : Изд-во ВолГУ, 2009. – 490 с.

3. Кожитов, Л. В. Создание для наноэлектроники новых материалов на основе углеродного нанокристаллического материала и металлополимерных нанокомпозитов / Л. В. Кожитов, В. В. Козлов, В. В. Крапухин // Изв. высш. учеб. заведений. Материалы электрон. техн. – 2006. – № 4. – С. 4–10. 4. Кожитов, Л. В. Структура и физико-химические свойства органического полупроводника на основе полиакрилонитрила и его композита с наночастицами меди / Л. В. Кожитов [и др.] // Изв. высш. учеб. заведений. Материалы электрон. техн. – 2004. – № 4. – С. 7.

5. Козлов, В. В. О химических превращениях полиакрилонитрила при термической обработке в вакууме и атмосфере аммиака / В. В Козлов [и др.] // Изв. высш. учеб. заведений. Материалы электрон. техн. – 2004. – № 4. – С. 45–49.

6. Козлов, В. В. Особенности образования системы полисопряженных связей полиакрилонитрила в условиях вакуума при термической обработке / В. В. Козлов // Высок. соединения. – Серия А. 2001. – Т. 43, № 1. – С. 3–26.

7. Козлов, В. В. Протонная проводимость углеродных наноструктур на основе пиролизованного полиакрилонитрила и ее практическое применение / В. В. Козлов [и др.] // Изв. высш. учеб. заведений. Материалы электрон. техн. – 2008. – № 1. – С. 59–65.

KVANTOVO-CHEMICAL CALCULATIONS OF PROCESSES OF ADSORPTION OF SIMPLE GAS-PHASE MOLECULES ON POLYACRYLONITRILE PIROLIZOVANNOGO'S SURFACE

N.A. Anikeev, I.V. Zaporotskova

In work adsorptions of gas-phase molecules of hydrogen, oxygen and fluorine on a surface oneand two-layer pirolizovanny polyacrylonitrile are investigated. The analysis of the received results established that for two-layer pirolizovanny polyacrylonitrile the atom of the nitrogen which is a part reкcaroнa of a surface, stimulates process of adsorption of molecules of hydrogen and fluorine, however adsorption of a molecule of oxygen influences negatively.

Key words: pirolizovanny polyacrylonitrile, adsorption process, nanoelectronics, molecular cluster, monolayer.

27 =