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Abstract. On a basis of the comparative analysis of the references data the correlated
dependencies between the optical characteristics of aqueous sols of spherical nanoparticles
and their diameter have been discovered. As a result, the empirical dependencies between the
values of the square of wave frequency in the adsorption maximum of the surface plasmon
resonance and average diameter of the nanoparticles were determined as well as between
the values of the adsorption band width on a half of its height and silver nanoparticles distribution
per size. Proposed dependencies are described by the linear equations with the correlation
coefficients 0,97 and 0,84 correspondingly.
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1. Introduction the last twenty years and the need for
nanotechnology will only increase, since the
The field of nanoscience has blossomed over miniaturization becomes more important in such
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areas as computing, sensors and biomedical
applications. Advances in this field largely depend
on the ability to synthesize nanoparticles of various
materials, sizes and shapes as well as on efficiency
assemble them into the complex architectures.
The early well-known methods to produce
suspensions of very small noble—metal particles
are still used today and continue to be the standard
by which other synthesis methods are compared.
The most popular method to synthesize Au
suspensions is the so-called Turkevich method,
which employs the reduction of chloroauric acid
with sodium citrate and produces a narrow size
distribution of 10 nm particles [1]. For Ag
nanoparticles suspensions a common method is
the Lee—Meisel method, which is a variation of
the Turkevich method in that AgNO, is used as
the metal source [2], but unlike the Turkevich
method, the Lee—Meisel method produces a broad
distribution of particle sizes. The most common
method for the synthesis of nanosized Ag particles
is the reduction of AgNO, with NaBH,. This
method can also be adapted to produce particles
of other metals such as Pt, Pd, Cu, Ni, ect. [3-6],
although the specific protocols depend on the
reduction potential of the source ion. Cu and Ni
suspensions, for example, are not very stable since
the metal particles are easily oxidized requiring
strong capping ligands to prevent the oxidation.
Silver nanoparticles (Ag—NPs) are characterized
by unique combination of the important physical-
chemical properties, namely by excellent optical
characteristics, by ability to amplify the signal in
spectroscopy of the combination dispersion [7],
and also by high antibacterial properties. Among
the three metals (Ag, Au, Cu) that display surface
plasmon resonances (SPR) in the visible spectrum,
exactly Ag exhibits the highest efficiency of the
plasmon excitation, that leads to the abnormally
high value of the extinction coefficient of Ag—
NPs [8]. Moreover, optical excitation of the
plasmon resonances in nanosized Ag—NPs is the
most efficient mechanism by which light interacts
with matter. A single Ag nanoparticle interacts
with light more efficiently than a particle of the
same dimension composed of any known organic
or inorganic chromophore. Silver is also the only
material whose plasmon resonance can be tuned
to any wave-length in the visible spectrum. Under
conditions of modern tendency to the
miniaturization and the necessity to improve the

technological processes of the new materials
obtaining based on Ag—NPs, there is problem of
their identification, which requests the cost
equipment and causes a search of the alternative
ways of their average size and of their size
distribution determination by others methods, in
particular, by calculated ones with the use of the
empirical equations and dependencies which are
based on the property of adsorption of the
electromagnetic irradiation in UV/visible diapason
by sols of Ag—NPs [9].

We have used the optical properties of silver,
namely the dependence of SPR adsorption
maximum position on a size of Ag—NPs as the
characteristic of their size and the width of the
adsorption band on a half of its height as Ag—
NPs size distribution.

2. Theoretical Grounds

On Figure 1 the SPR extinction spectra of
Ag suspensions by different particle diameters are
shown [10]. It is apparent that the dipole
maximum rapidly shifts to longer wave—lengths
as the particle size increases beyond 70 nm
(450 nm spectral maximum) revealing the
quadrupole peak at about 420 nm. The observed
spectral shift results from the «spreading» of the
particle’s surface charge over a larger surface
area so that the surrounding medium better
compensates the restoring force thus slowing the
electron oscillations [11].

A sufficiently small particle of any
conducting material exhibits SPRs, yet its spectral
position depends on many factors, most importantly
on the material’s frequency-dependent complex
dielectric function. The wavelength dependence
of the real (& (®)) and imaginary (¢, (®)) parts
of the dielectric function describing polarizability
and energy dissipation, respectively, are given on
Figure 2 for Ag [12].

An SPR occurs when there is phase-
matching between the polarization in the particle
and incident field, a condition that is fulfilled for
very small particles (<10 nm) when ¢,(®w)= —
2¢,, where ¢ is the dielectric constant of the
surrounding medium [13] and is satisfied for very
small Ag particles suspended in water (¢, = 1,77)
at an excitation wavelength of around 385 nm.
The imaginary part of the metal dielectric
function, which describes losses, must be small

76 A.R. Kytsya and etc. An influence of a size and of the size distribution



at the SPR frequency to provide efficient
electron oscillations. Several processes can dump
the oscillations, such as electron scattering by
lattice phonon modes, inelastic electron-electron
interactions, scattering of the electrons at the
particle surface, and excitation of bound
electrons into the conduction band (interband
transitions) [14]. Whereas electron-phonon
interactions account for a majority of ¢&,(®),
inelastic electron—electron interactions and
surface scattering are less significant, with the
latter being important only for <5 nm particles.
Interband transitions can cause a substantially
decreased efficiency of plasmon excitation as is
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the case for Au and Cu, where there is significant
overlap between the interband adsorption edge
and the plasmon resonance. For Ag, however,
the adsorption edge is in the UV (320 nm) and
has little impact on the SPRs, which appear at
wavelengths larger than 370 nm, accounting for
the fact that excitation of the SPR in Ag particles
is more efficient than for Au and Cu.

For future practical applications of
nanoparticles, synthesis techniques capable of
producing the highly crystalline particles of many
different sizes and narrow distribution are
necessary as well as the determination of their
size and of their size distribution.

e e T e

680

wavelength/nrm —»

Fig. 1. UV/Vis extinction snectra of silver nanonarticles susnensions for 2() different narticle diameters [10]
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Fig. 2. Real (e1(®)) and imaginary (€2 (m)) parts of the dielectric function of silver as a function of wavelength.
Curves were prepared using values listed in [12]
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3. Results & Disscussion

Generally, for the theoretical description of
the SPR phenomenon of the metallic little particles
and for the Ag—NPs, in particular, the solvings of
the Maxell’s equations are used, which in 1908
have been proposed by Gustav Mie [15]. Starting
from the macroscopic Maxell equations, Gustav
Mie calculated the extinction, scattering and
absorption cross-sections of Au nanoparticles and
showed how the spectra of the suspensions evolve
as a function of particle size. The results of these
calculations also allowed him to sketch scattering
diagrams for different particle sizes and diagrams
depicting the electric and magnetic fields of the
dipole, quadrupole, octupole and sextupole
components of the resonance. Now, it is well
known that the optical resonances in noble-metal
nanoparticles are the collective oscillations of
conduction electrons termed “plasmons”.

The extinction coefficient (C, ) of the
spherical nanoparticles in accordance with Mie’s
theory is described by the equation:

Cc = 247r2r.9;?4/2 &,
o A (g +2e, ) +6

(1)

where 7 is the radius of a particle, A is a length of
a wave of the electromagnetic irradiation, ¢, is
the dielectric transmissivity of the solvent, ¢, is a
real part of the value of dielectric transmissivity
of a part of the metal, ¢, is the imaginary part of
the value of dielectric transmissivity of a part of
the metal.

It is known [9; 10], that the position of SPR
maximum adsorption depends on a size of the Ag—
NPs. Such phenomenon is explained by
dependence of real and imaginary parts of the
dielectric permeability of silver on size of the
nanoparticle. In accordance with Drude’s model
[16], ¢, and ¢, can be described by the
expressions:

€= Epy +— - 2 5 2 )

HOMO) HOMO)

e g" 4+ pr pd 3
2k w( 2+w) w(w2+w§) 3)
Y

w,_=wd+7F 4)

where ¢, , and ¢, , are values of the real and of
the imagined parts of dielectric permeability of
silver mass, @, w, and w, are correspondingly
the frequency of the electromagnetic irradiation,
plasmon frequency of the metal and decrement
of electron gas extinction in the mass metal, v .is
the Fermi rate.

However, calculated accordingly to such
expressions adsorption spectra of aqueous sols
of spherical Ag—NPs are differed from the
experimental ones, that can be explained by
different reasons, in particular: firstly, in
presented example of the calculations it was not
taken into account the distribution of Ag—NPs
per sizes, that has an influence on a value of the
SPR adsorption band width on a half of its height
and, secondly, in classical Drude’s model the
adsorbed stabilizer on the surface doesn’t take
into account; in turn, such stabilizer can influence
on the value of the wave length in adsorption
maximum of the Ag—NPs sol.

In order to determine the dependencies
between the optical characteristics and size of
the nanoparticles we have done an analysis of
the great data of references [10; 17-51]
concerning to the synthesis and the investigations
of Ag—NPs.

It was determined (see Fig. 3), that a square
of the wave frequency in adsorption maximum of
SPR (w,) linearly depends on a value of the
average diameter (d) Ag—NPs. Such dependence
is described by the expression:

*=(6,14+0,05)-10% —(2,45+0,08)-10 (5)

with the correlation coefficient 0,97.

At the same time, it was not discovered the
direct dependence between the width of the
adsorption band of Ag—NPs on a half of its height
(44 ) and nanoparticles distribution per size (A4d).
Evidently, it is connected with the nonmonotonic
change of the adsorption band of Ag—NPs at their
size increasing [16]. However, the all analyzed
data are satisfactory described by the linear
equation:

log(d -A2) =(0,2£0,1)+(089%0,06)-log(Ad - 4,,,.) (6)

with the correlation coefficient 0,84 (see Fig. 4).
Here /4 _ is a value of the wave length in a

max

maximum of the SPR.
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Fig. 3. Dependence between the square of the wave frequency in adsorption maximum of SPR
and diameter of Ag—NPs
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Fig. 4. Dependence between the logarithms of compositions log(d - AL) and log(Ad - A

It is necessary to notify, that in processed data
Ag—NPs were obtained in aqueous solution with the
use of different upon nature stabilizers of the surface
and precursors. However, in spite of this fact,
discovered by us dependencies are good described
with the respective correlation coefficients. It is clear,
that for the explanation of nature for such
dependencies the advanced theoretical analysis of
the electron gas interaction with the electromagnetic
irradiation is necessary, however, at the presented
stage, such empirical dependencies can be used as
the rapid method of the synthesized by different
methods of Ag—NPs identification in laboratory and
industrial conditions without the application of
complicated, cost and often absent in Ukraine
devices for their identification.
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4. Conclusions

Empirical dependencies between the
dimensional and optical characteristics of silver
nanoparticles were determined. Such
dependencies can be used for estimation of value
of the average diameter and distribution per size
of Ag—NPs without application of complicated
equipment.
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AnHoTtanus. Ha ocHOBe CpaBHUTEIHLHOTO aHAIN3a CIPABOYHBIX TAHHBIX OBLIN OOHA-
PYKEHBI KOPPEIALNOHHBIE 3aBUCUMOCTH MEX/Y OIITHYECKUMHU 0COOCHHOCTSIMH BOJHBIX CO-
nel cepryeckux HAHOUACTHIL U UX UaMeTpa. B pesynbrare momydeHbl SMITUPUYCCKHE
3aBHCHMOCTH MEXK]y 3HAYCHUSMHU KBaJ[paTa YacTOThI BONHBI B aJICOPOIIMOHHOM MaKCHUMY-
M€ TTOBEPXHOCTHOTO PE30HAHCA IJIA3MEHHBIX BOJH M CPEJIHHUM JMAMETPOM HaHOYACTHII, a
TaKKe MEXTy 3HAYCHUSIMH aJICOPOIIMOHHOM MIMPHUHBI TPYIIIBI HA MIOJIOBUHE U3 €€ BBICOTHI U
pacrpeneneHus pa3mMepoB cepeOpsiHbIX HaHodacTull. [IpennokeHHble 3aBUCIMOCTH OIHCA-
HBI IMHEHHBIMH YpaBHEHUIMHE ¢ Kod ¢ dunpenTamu koppemsiuun 0,97 u 0,84 cooTBETCTBEHHO.

KiroueBble cjioBa: HaHOTEXHONOIHsI, CEPEOPSHBIC HAHOYACTHUIIBI, BOIHBIE COJIH, I10-
BEPXHOCTHBIM PE30HAHC TUIa3MEHHBIX BOJH, crieKTphl UV/Vis.
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